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Abstract 

In a new approach to helical diffraction a helix gen- 
erating function is defined, and thence an expression 
for the autocorrelation function (a.c.f.) for a helix is 
obtained. The Fourier transform of this a.c.f, gives a 
new expression for the diffracted intensity, which is 
shown to be equivalent formally to the classical 
expression of Cochran, Crick & Vand [Acta Cryst. 
(1952), 5, 581-586] and A. R. Stokes (unpublished). 
The new expression allows straightforward exam- 
ination of the effects of helical disorders on the 
diffracted intensity. The thermal and paracrystalline 
effects of disorders with cylindrical symmetry are 
shown, and examples are given from the diffraction 
of a model of the actin helix. The general case, disor- 
der with no symmetry, is derived and the effects of 
axial and radial disorder, separately and together, are 
computed, again for the model actin helix. Transla- 
tional disorder is also included, and its effects are 
explained. The new results are compared with existing 
accounts of the effects of helical disorders on fibre 
diffraction. 

Introduction 

Our interest in helical diffraction derives from un- 
solved problems of biological structure and function. 
The Fourier transform for a helical array of atoms or 
molecules was derived by Cochran, Crick & Vand 
(1952) and by Stokes (unpublished). This formulation 
is well known and can be found in several textbooks 
(e.g. James, 1962; Vainshtein, 1966). Our objective 
here is to obtain a reformulation which will allow the 
inclusion of disorder. In particular, we consider the 
case of paracrystalline disorder as defined by 
Hosemann & Bagchi (1962). 

Biological systems are generally non-crystalline 
and contain a certain degree of disorder. A current 
example is the diffuse scattering from one-dimen- 
sional multi-layered membrane systems. In the special 
case of nerve myelin, the problem of the diffuse scatter 
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due to positional disorder has been solved (Worthing- 
ton, 1986). In the nerve myelin study, the basic 
approach was the use of autocorrelation functions in 
real space to obtain the diffraction formulas. In this 
paper our first task is to obtain an expression for the 
autocorrelation function (a.c.f.) of a helical array of 
atoms with no disorder. It will be shown that this 
kind of analysis can then be used to treat the cases 
of thermal and paracrystalline disorder. Before we 
start our analysis of helical diffraction it is useful to 
review the a.c.f, formulas and their Fourier transforms 
for one-dimensional systems. 

Review of one-dimensional systems 

An account of diffraction theory applied to one- 
dimensional membrane-type systems has been given 
by Worthington (1987). Our summary here is from 
the point of view of disorder problems although we 
retain the notation used in previous studies. 

The one-dimensional unit cell has electron density 
t(x) and width d. We use the notation: t(x)¢:~ T(X),  
where t(x) and T(X) are a Fourier-transform pair 
and x, X are real- and reciprocal-space coordinates. 
The a.c.f, of the electron density t(x) is denoted j(x) 
and is defined as 

j ( x ) =  t(x) • t (-x) ,  (1) 

where * is the convolution symbol. The a.c.f, has 
width 2d. The Fourier transform of j(x) is J ( X ) ,  
where j(x)C~J(X) and J(X)=lT(X) l  2. 

When more than one unit cell is considered, the 
configuration of the lattice enters into the calculation 
of the a.c.f, of the assembly. The lattice generating 
function is denoted ~b(x): the a.c.f, of the lattice is 
denoted l(x) and is defined as 

l(x) = ~b(x) * ~(-x) .  (2) 

The Fourier transform of the a.c.f, l(x) is L(X) ,  where 
I(x)C~L(X). In diffraction theory (James, 1962) the 
Fourier transform L(X) is called the interference 
function of the lattice. 

The a.c.f, of the assembly is denoted p(x):  the 
symbol p corresponds to the Patterson function of 
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X-ray crystallography. The diffracted intensity I (X)  
of the assembly is the Fourier transform of the a.c.f. 
p(x), where p(x)¢~ I(X). The a.c.f, of the assembly, 
p(x), is given by 

p(x) =j(x) * l(x), (3) 

and the diffracted intensity I(X) is simply expressed 
a s  

I (X)=J(X)L(X) .  (4) 

The a.c.f, of the one-dimensional lattice is readily 
obtained when the form of the lattice-generating func- 
tion ~(x) is known. We consider three special lattices 
with well defined lattice-generating functions. 

(1) No disorder 

This perfect lattice contains N lattice points which 
are a distance d apart. The lattice-generating function 
O(x) for this lattice is given by 

j = N - I  

~b(x)= E 6(x- jd) ,  (5) 
j = 0  

where ~(x) is a sum of delta functions. The a.c.f, l(x) 
for this lattice is expressed in series form as 

m = N - I  

l ( x ) = N 6 ( x - 0 ) +  • ( N - m ) 8 ( x ± m d ) ,  (6) 
m = l  

where rn is an integer. The Fourier transform L(X) 
of l(x) is given by 

m = N - I  

L(X) = N + 2 ~, (N - m) cos 21rrn dX. (7) 
m = l  

This expression for the interference function for a 
perfect one-dimensional lattice has been given by 
James (1962) and Vainshtein (1966), although it is 
usually expressed in a different form first derived by 
yon Laue. 

(2) Thermal disorder 

In this case the lattice points have thermal disorder: 
it is convenient to assume that the disorder about 
each lattice point is Gaussian and is represented by 
g(x), where 

g(x)=(1/w)exp[-Tr(x/w)2], (8) 

and where w is the integral width of g(x). The Fourier 
transform of g(x) is G(X) and is given by 

G(X) =exp [-rr(wX)2].  (9) 

It is convenient to use the following convolution 
notation (Hosemann & Bagchi, 1962). The n-fold 
convolution of the Gaussian function g(x) is ~"(x) 
and is defined as 

~,"(x)=g(x)*g(x)* . . .*g(x) ,  (10) 

where the r.h.s, of (10) contains n convolutions. The 

Fourier transform of ~"(x) is G"(X) ,  where ~"(x) ¢:> 
G"(X) and where G"(X) = exp [-Trn(wX)2]. 

The a.c.f, of the thermally disordered lattice is 
denoted/to(x). The expression for/td(X) has a certain 
simplicity in that the contribution between the nth 
neighbors involves the constant factor ~2(x) for all 
values of n. Thus, the a.c.f. /to(x) is given by 

/to(x) = SS(x-O) 
m = N - I  

+ • (N-m)6(x±md)*~2(x ) .  (11) 
m = l  

In the case of thermal disorder, the conventional 
notation M = rr(wX) 2 is adopted, so that the Fourier 
transform of ~2(x) is simply exp ( - 2 M ) .  The Fourier 
transform Lto(X) of /td(X) is then given by 

Lto(X) = N +2 exp ( - 2 M )  

m = N - I  

x ~, (N-m)cos2r tmdX.  (12) 
m = l  

It is usual, however, to express the interference func- 
tion ttd(X ) in two parts: the diffuse intensity and the 
intensity due to the interference function for the 
average lattice. Comparison with (7) shows that 
ttd(X ) may be written in the conventional form 

Ltd(X) = N(1-e-2M)+e-2ML(X). (13) 

This formula was first derived by Debye in 1913 using 
a different approach (see James, 1962). 

(3) Paracrystalline disorder 

In this case the lattice points have paracrystalline 
disorder as defined by Hosemann & Bagchi (1962). 
Each lattice point is generated by a Gaussian proba- 
bility q(x) which has the same form as g(x) in (8) 
but with the appropriate integral width w. Con- 
sequently, the lattice points have only an average 
separation distance d. The a.c.f of this lattice is 
denoted Ipd(X) and it has the property that the contri- 
bution between ruth neighbors involves the factor 
t~m(x). The a.c.f. /pd(X) is then given by 

/pa(x) = NS(x-O) 
r e = N - 1  

+ ~ ( N - m ) 8 ( x ± m d ) *  ~m(x). (14) 
m = l  

Since the Fourier transform of ~m(x) is Q~(X) ,  the 
Fourier transform Lpo(X) of the paracrystalline lat- 
tice can be expressed as 

m = N - 1  

Lpo(X) = N + 2  ~, ( N -  m)Qm(X) cos 27rm dX. 
m = l  

(15) 

Note that the interference functions for the three 
lattices have the same form except for the inclusion 
of the Gaussian transform: in the perfect lattice, the 
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transform is unity; in the thermal case, it is a constant 
factor e-2m; in the paracrystalline case, the factor 
Qm(X) is contained within the summation part of 
(15). 

The paracrystalline disorder parameters are usually 
expressed in terms of g factors (Hosemann & Bagchi, 
1962). In the one-dimensional case, the integral width 
w = (27r) 1/2A, where A is the root mean square value 
of the motion. The g factor is a ratio and is defined 
as g - - A / d ,  where d is the average repeat unit of the 
lattice. 

Helical systems 

In the three-dimensional case r has Cartesian coor- 
dinates x, y, z in real space while R has reciprocal- 
space coordinates X, Y, Z. Cylindrical coordinates 
are used in helical diffraction: r has coordinates p, ~o, z 
while R has coordinates ~, ~, Z. The magnitudes r 
and R have the property that r2=p2+z  2 and R 2= 
s¢2+ Z 2 respectively. The diffracted intensity from a 
helix is denoted I(~, @, Z).  In a diffraction experi- 
ment, the cylindrically averaged intensity I(~:, Z) is 
recorded, where 

27r 
I ( ¢ , Z ) = ( 1 / 2 z r )  ~ I(~, ¢ , Z )  d¢ .  (16) 

0 

Thus, in order to compare with experiment, we need 
to obtain an expression for I(~:, Z). 

By analogy with the one-dimensional case we first 
need to define the lattice-generating function ~b(r) for 
the helix and hence obtain an expression for the a.c.f. 
l(r) for the helix. In this section we consider only 
elementary helices which contain point atoms. Since 
point atoms can conveniently be represented by a 
unit-weight delta function, and, as the Fourier trans- 
form of a delta function is unity, from (4) it follows 
that the diffracted intensity I(s  c, Z) for this elementary 
helix is the same as the averaged interference function 
L(~:, Z). We consider the undistorted helix, and then 
special helices with well defined lattice disorders. 

No disorder 

This perfect helix contains a total of S lattice points. 
It has M subunits (point atoms) in N turns with 
radius ro, subunit repeat h and pitch p. The helix 
repeat is c and c = Mh = Np. From (5) the lattice- 
generating function @(r) for this helix can be 
expressed in series form as 

j =..q-- 1 
~b(r)= Y. 8 ( p - r o ,  ~o-j~oo, z - j h ) ,  (17) 

j = 0  

where the j = 0 (the origin point) of the helix has 
coordinates ro, 0, 0. Since M~oo = N27r the value of 
~Oo is specified: ~Oo = 27rN/M.  It is convenient to use 
the notation ~Oo = 2e, where e = zrN/M.  The a.c.f, l(r) 
for the helix follows from (2) after changing variables. 

l(r) in series form is expressed as 

m = S - 1  

/ ( r ) = S S ( r - 0 ) +  Y~ ( S - m ) 8 ( r + r m ) ,  (18) 
m = l  

where the delta functions at rm have coordinates 
Am, ~om, + mh. The value of the radius Am is given by 

Am = 2rolsin mel. (19) 

The a.c.f. /(r) for this perfect helix consists of a 
series of delta functions on rings of radius Am in 
planes at right angles to the z axis and with intercepts 
z = + mh. The first delta function on the ring of radius 
A m has ~ coordinate ~m = 7r/2+ me. Each ring con- 
tains S - m  delta functions uniformly distributed on 
the ring with angular separation m¢o. All delta func- 
tions lie on the z axis (Am =0) when m =0,  +M, 
+2M, +3M etc. The a.c.f, l(r) becomes l(p, z) on 
rotation about the z axis. A drawing of the cylindri- 
cally symmetric a.c.f, l(p, z) for this perfect helix is 
shown in Fig. 1. 

The relationship between the a.c.f, l(p, z) and the 
cylindrically symmetric Patterson function of the 
helix is noted. A plane section through l(p, z) contain- 
ing the z axis shows discrete delta-function peaks at 
radii Am and at levels of z = mh. This plane section 
corresponds to the Patterson function of the elemen- 
tary helix. 

The Fourier transform of the a.c.f, l(r) is L(R), 
where l(r)¢:> L(R). For comparison with experiment, 

a.c.f. /{p.z) z, 
S--M 

S--3, radius -~3 
on ring 

S-2 radius 42 
~ on nng 2h 

S-1 delta functions 
l on ring 

/ 

2!.. S-1 on ring 

S-2 on ring ~ S--3 on ring 

radius A 

Fig. 1. A d i a g r a m  o f  the a.c.f, l(p, z) for  the per fec t  helix. The  
rings in the p lanes  z = + mh are shown as con t inuous  lines. The  
ruth ring conta ins  S - m  del ta  funct ions  un i fo rmly  dis t r ibuted 
on a circle o f  radius  Am. All del ta  funct ions  are conf ined to the 
z axis when  m = 0 ,  :t:M, +2M, +3M etc. 
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the cylindrically averaged interference function 
L(~:, Z)  as defined in (16) is required. When s c = 0 the 
interference function L(sC, Z)  reduces to L(0, Z) :  note 
that L(0, Z)  has the same form as (7). The helical 
diffraction pattern has discrete layer lines which occur 
when Z -- lC, where I is an integer and where C = 1/c. 
Thus, the averaged interference function becomes 
L(~:, l). 

The Fourier-transform contribution due to each 
delta function on the ring of radius Am is 
exp [ -  i27r~:Am COS (~m - qb)]. After cylindrically 
averaging over • as defined by (16) a single term 
Jo(2rrsc`4m) is obtained (James, 1962). The interference 
function L(s c, l) for the helix is then given by 

m = S - I  

L(~,I)=S+2 ~, (S-m)Jo(27r~Am)cosETrml/M , 
r n = l  

(20) 
where Am is defined by (19). 

The diffracted intensity I(~:, 1) for this elementary 
helix is equal to L(s c, I). At first sight, (20) looks 
inadequate to account for the characteristic layer-line 
profiles. Nevertheless, computer calculations readily 
demonstrate that (20) gives the correct layer-line 
profiles. It will be shown that (20) is, in fact, identical 
to the classical formula for helical diffraction. This 
follows from an expansion for Jo(2~r~:`4,,,) containing 
Bessel functions of different orders (Jeffreys & 
Jeffreys, 1962). 

Equation (20) for L(~C, 1) has a certain simplicity, 
since it contains only zero-order Bessel functions and 
cosine terms. On the other hand, the summation is 
over +S terms (this includes the origin term and 
± S - 1  terms) with different weight factors S - m ,  so 
that the end result is not intuitively obvious. In the 
case of the perfect helix, it will be shown that the 
summation can be simplified by summing over M 
terms with equal weight factors (w). 

This result follows from the study of 'matched pairs' 
which have the same J0(2 rr~`4m) coefficients. The helix 
has M subunits in N turns and/. t  repeat units such 
that S =/xM. There are E 'matched pairs' within each 
repeat unit: E = ( M - 1 ) / 2 ,  M is odd while E =  
( M - 2 ) / 2 ,  M is even. The first 'matched pair'  has 
coefficient Jo(27r~:`41) and occurs when m = 1 and 
m = M - 1 within the first repeat unit [of the summa- 
tion in (20)]. The j th  'matched pair' with the same 
coefficient Jo(2rr~:`4s) within the kth repeat unit, has 
a combined weight factor of 2 S - ( 2 k - 1 ) M ,  where 
1 <-j <- E and 1 -< k - / x  and where j  and k are integers. 
The sum of the weight factors for each of the /~ 
'matched pairs' is 

2 ~ [2S - (2k -1 )M] .  
k = l  

This sum is equal to 2/zS. As the desired summation 
is over M terms, vce now assign weight factor w x/zS 
to each of the two terms contained within the 

'matched pairs'. There is the origin term to consider: 
this is the m = M term of the summation. It contains 
the single terms corresponding to m = 0 ,  +M,  
+ 2 M , . . .  ± ( / z - 1 ) M .  The weight factor for the j th  
single term within the kth repeat is S - k M .  The sum 
of the weight factors for the m = 0 and the 2(~ - 1) 
single terms is 

/ z - 1  

S+2 ~ [S-kM]. 
k = l  

This sum is w =/xS. When M is even, there is also 
the m = M/2 term to consider. Similarly, it can be 
shown that the weight factor for this term is 

/.t 

2 X ( k M - M / 2 ) .  
k = l  

This sum is w =/xS. 
Finally, the cylindrically averaged intensity I(~:, I) 

can be expressed as a summation over M terms and, 
since all terms in the new summation have the same 
weight factor w =/zS, we can write 

m = M  

I(~,I)=/.LS Y~ Jo(27r~Am)cOs2~.ml/M. (21) 
m = l  

A plot of the diffracted intensity I(~, l) for the actin 
helix is shown in Fig. 2. The intensities were computed 
using (21). Model parameters are M = 1 5 ,  N = 7 ,  
c = 410 and ro = 40 A(Worth ington ,  1959) and/z  = 6. 
These parameters refer to an early model and, 
although the modern parameters are different 
(Tajima, Kamiya & Seto, 1983), the calculation makes 
the point required. The only difference between the 
earlier and the modern parameters is in the numbering 

Intensity profiles: no disorder  
90 

80 

70 

60 
_~ l=o 

50 

~ 1=7 

/ \ 
20 // / \ ~ j l= 1 

' l Z / /  " / " . \  ~ ~ 
0 5 10 15 20 25 30 35 40 45 50 

Reciprocal spac ing  x 0.00075 (A ~) 

Fig. 2. The diffracted intensity I(~:, l) for the actin helix showing 
layer lines ! = 0, l = 1 and l = 7. The intensities were calculated 
using equation (21) and model parameters M = 15, N = 7, c-- 
410 and ro = 40 ~ with ~ = 6; see text. 
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of the layer lines. The layer-line intensity profiles are 
unaltered. The layer-line intensities I(~, l) for l = 0, 
l = l  and I = 7  are shown. The l = 0 ,  1=7 and l = l  
curves are readily identified as the classical Jo2(), 
j2( ) and J~( ) profiles. In Fig. 2 the value of S = /zM 
is fixed by our choice of/x = 6. If/x is larger then the 
width of the layer-line profiles along the Z axis 
becomes sharper: the integral width of the profile 
along the Z axis is proportional to 1/S (James, 1962). 
Provided that p. > 1 and that/.1, is an integer, the value 
of S will not affect the diffracted intensity profiles of 
the layer lines in the radial direction (~). 

The condensed formula (21) for i(s c, l) provides a 
convenient starting point for demonstrating the 
equivalence of our equation (20) to the classical for- 
mulas of helical diffraction. The expansion (Jeffreys 
& Jeffreys, 1962) for Jo(27r~Am) is 

/,i = o o  

Jo(27r~:A,.) = ~ J](2~:ro) cos nm~oo, (22) 
?1 = - o o  

where n is an integer and where m~oo = m27rN/M is 
the angle subtended by a,,, at the centre of the elemen- 
tary helix of radius ro. On substituting (22) into (21), 
and, for a specific value of n, we obtain 

I(~¢, l )=  ixSj2(27r£ro)g'2(n, l), (23) 

where O(n, l) is the sum of the product of cosines: 

m = M  

O(n, l) = ~ cos 27rmNn/M cos 27rml/M. (24) 
m = l  

By expanding the product of the two cosines it can 
readily be shown that the factor g-2 (n, l) -- M when 

l = Nn + My, (25) 

where n,v are integers, and that otherwise 12(n, l) -- 0. 
Equation (25) is the well known selection rule for 
helical diffraction. For example, if we choose M -- 15 
and N -- 7 as the model parameters for the actin helix 
(Worthington, 1959) then the diffracted intensity on 
layer line l = 7 is I(£, 7 )=  sEj2(27r£ro) in agreement 
with classical theory. 

The effects of disorder on helical diffraction 

In the general case the disorder is generated by three 
separate Gaussian functions which relate to the radius 
ro, the axial angular displacement q~o and the subunit 
distance h. Radial disorder b(ro) is the ro variation, 
axial disorder a(q~o) is the q~ variation while transla- 
tional disorder s(h) is the z variation. The combined 
Gaussian function expressing the location of each 
lattice point is [b(ro)* a(q~o)]s(h), where the three 
Gaussian functions have integral widths u, v, w 
respectively. It is convenient to write c(p,q~)= 
[b(ro) * a(~oo)]. In general, the Gaussian probability 
c(p,q~) is not cylindrically symmetric, that is, 
c(p, q~) # c(p). The Fourier transform of c(p, q~) is 

C(sC, qb), where c(p, q~)<=~ C(~, ci9), and C(s c, ~ )  is 
also not cylindrically symmetric. 

(1) Special case of disorder with cylindrical symmetry 

The treatment of disorder is relatively straightfor- 
ward when the cylindrically symmetric Gaussian 
function c(p) is involved. In the case of no disorder, 
the Fourier transform contribution due to each 
delta function on the ring of radius A m is 
COS [27rsCAr, COS (q~m--~)] (we can ignore the sine 
contribution, the imaginary part, in this case because 
it disappears in the cylindrical averaging). After 
averaging over • the zero-order Bessel function 
Jo(27r~Am) is obtained. In the special case when the 
cylindrically symmetric Gaussian function c(p) is 
involved the Jo(27r~A,,) function is again obtained 
but multiplied by the appropriate Fourier transform. 

It is convenient to consider thermal and paracrys- 
talline disorder in parallel. In the one-dimensional 
case the interference functions for thermal disorder, 
defined by (12), and paracrystalline disorder, defined 
by (15), differ only in the exponents of the Gaussian 
transforms e -2m and Q ' ( X ) ,  that is, 2 for thermal 
and m for paracrystalline. Recall that thermal disor- 
der refers to variation about each lattice point whereas 
paracrystalline disorder is cumulative with only aver- 
age values for the model parameters ro, ~Oo, h. 

We first treat the special case when c(p, q~) = c(p), 
that is, when g(r) has cylindrical symmetry about the 
helical axis (the z axis). The disorder probability is 
Gaussian and is represented by g(r), where r is the 
magnitude of r in real space. The cylindrically sym- 
metric Gaussian function g(r) can be expressed as a 
product of two Gaussians: g ( r ) =  c(p)s(z), where 
s(z) has the same form as (8). The cylindrically sym- 
metric Gaussian function c(p) is given by 

c(p)=(1/u)  2 exp[-rr(p/u)2], (26) 

where u is the integral width. The Fourier transforms 
of g(r), c(p) and s(z) are G(R) ,  C(¢) and S(Z)  
respectively. Since g(r)cz>G(R), it follows that 
G(R)=C(sc)S(Z) .  By analogy with the one- 
dimensional case, we can write G(R)= e -B, where 
B -- oR + ?,U: oR = ~-(u¢) 2 and ~ = 7r(wz) 2. 

The a.c.f, of the cylindrically symmetric disordered 
elementary helix is l~(r) and from (11) and (18) it 
follows that 

m = S - 1  

l c s ( r ) = S S ( r - 0 ) +  ~ (S-m)6(r+rm)*~, ' ( r ) ,  
.,=1 (27) 

where the delta functions at r,,, have cylindrical coor- 
dinates A,,,, q~,,,, +mh and where t = 2  for thermal 
disorder and t = m for paracrystalline disorder. By 
analogy with the one-dimensional case, the Fourier 
transform of ~'(r)  is e -tB. The Fourier transform of 
los(r) is Los(R), where l~(r) <=> L~(R). In order to com- 
pare with experiment, we require L~(¢, l), the 
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cylindrically averaged interference function, and, on 
modifying (20), we obtain 

m = S - I  

Lcs(~,I)=S+2 Y. e-'B(S-m)Jo(27r~A,,) 
m = l  

x cos 2rrml/M. (28) 

The averaged diffracted intensity I¢s(~¢, l) is also given 
by (28) as point atoms are involved. 

In case of thermal disorder, when t = 2, the diffrac- 
ted intensity I td(~ ,  I) from the cylindrically symmetric 
disordered helix can be expressed in two parts similar 
to (13). Thus, ltd(~:, l) in this form is given by 

Ita(~,l)=S[1-e-2B]+e-2~I(~,l). (29) 

In the case of paracrystalline disorder, when t = m, 
the diffracted intensity lpd(~, l) from the cylindrically 
symmetric disordered helix is given by 

m = S - I  

Ipa(~,l)=S+2 E (S-m)Jo(27r~A,,)e -"~ 
m = l  

× cos 2rrml/M, (30) 

where e -ran is the Fourier transform of ~ ' ( r )  and 
where B = ~ +  74P: o//= rr(u~:)2 and ~/4/" = 7r(wl/M) 2. 
From (30), when only paracrystalline disorder c(p) 
is involved, the fall-off in intensity is a function of s c 
only and is the same for all layer lines. 

A plot of the diffracted intensity /pd(~:, l) for the 
actin helix is shown in Fig. 3. The intensities were 
computed using (30) and the same model parameters 
as in Fig. 2. Only Gaussian disorder c(p) in a plane 

Intensity profiles paracrystalhne disorder 
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Fig. 3. Diffracted intensity profiles Ipa(s c, i) for the actin helix with 
paracrystall ine disorder.  Only Gaussian disorder c(p) is con- 
sidered. The intensities for layer lines l -- 0 and ! -- 7 were com- 
puted using equat ion (30) and the same model  parameters  as in 
Fig. 2. The cont inuous  curves have no disorder while the dot ted 
curves have paracrystall ine disorder  with g = 0.057. 

at right angles to the helical axis is considered. The 
layer-line profiles are l = 0 and l = 7: the continuous 
curves have no disorder while the dotted curves have 
paracrystalline disorder with g =0.057, where g is 
expressed as a fraction of to. From Fig. 3 the fall-off 
in intensity due to paracrystalline disorder c(p) is a 
function of ~: only, in agreement with theory. 

(2) General case of disorder with no symmetry 

In the general case when the non-symmetric 
Gaussian probability c(p, ~) is involved, the averag- 
ing process is complicated in that the appropriate 
Fourier transform associated with c(p, ~o) has to be 
included into the averaging process. Consequently an 
explicit result has not been obtained. The mathemati- 
cal expressions can, however, be set up on a computer. 

It is convenient first to consider axial disorder a (~Oo) 
and radial disorder b(ro) separately. When only one 
disorder is present then c(p, ~) is one-dimensional, 
that is, c(p, ¢) = c(p). The Fourier transform of c(p) 
is C(~j) and both functions have the same orientation 
0,,. Recall that the delta function at r = r,,, has orienta- 
tion ~om. When the Fourier transform is included in 
the averaging process, it is the difference in ~0 values 
which is relevant. The difference is denoted e,, and 
e,n =Om - q~m. 

In the general case of disorder, when the non- 
symmetric Gaussian function c(p, ~) is involved, the 
appropriate Fourier transform to be included in the 
averaging process is C'(~:, qb), where t = 2 for thermal 
disorder and t = rn for paracrystalline disorder. In 
the special case when c(p, ~) is a one-dimensional 
function, the cylindrically averaged contribution for 
this single disorder is denoted D~(~:) and, in integral 
form, Dm(~:) is 

27r 

D,, ,(~)=(1/27r)  ]" cos (2rr~A,,, cos qb) 
0 

x C'[~: cos (q~ + e,,)] dq~. (31) 

Equation (31) is derived by choosing q)= ~o,,, as the 
origin for the q~ sampling as q~ varies from 0 to 27r. 
• D,,(s c) can also be expressed in series form as 

j = J - 1  

Dm(~)=(1/J) Z COS[2rr~:AmCOSWj] 
j=0  

x C'[~ cos (wj + era)], (32) 

where toj =j27r/J. The value of J is chosen large 
enough to give correct sampling. Since each delta 
function on the ring of radius Am has the same 
difference in orientation em it follows that (32) is 
valid for each of the S - m  delta functions. 

The cylindrically averaged interference function 
for the disordered helix with one-dimensional disor- 
der c(p) and translational disorder s(z) is denoted 
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Lod(~:, l) and is given by 

r a = S - I  

Loa(~:, l) = S + 2 ~ exp (-tog/") 
m = l  

x ( S - m ) D m ( ~ ) c o s 2 7 r m l / M ,  (33) 

where °t#'= 1r(wl/Mh) 2. Note that  (33) has been 
derived for the case of  a single disorder  when c(p, ~) 
becomes a one-dimensional  function. Equat ion  (33) 
is also valid for the case of  two disorders provided 
that  the factor Dm(~) is modified. 

80 (A) Axial disorder. Axial disorder  refers to the ~o 
variat ion centred on the average value ~o. This vari- 
ation is expressed in terms of  tangential  mot ion rela- 70 
tive to the helical axis. The one-dimensional  Gauss ian  
function for axial disorder  is a(~0o) and,  therefore,  60 
a(~Oo) = a(o). The Gaussian function a (p)  has the .-~ 

• 50 same form as (8) but  with integral width v =  .~ 
(2"tr)l/2roStp. The Fourier  t ransform of a (p)  is A(~:) 
and both t ransforms have the same orientat ion Ore, ~ 40 
where Om=Tr/2+2me. Since ~m=~r/2+me,  the 
difference em = Om - ~t~m is em = me. The factor Dm(~) ao 
for axial disorder  is expressed in series form as in 20 
(32) when the appropr ia te  Fourier  t ransform 
Ct ( s  r, ~ )  is given by l0 

Ct(sc, cP)=exp{- t~r[v~cos(wj+me)]2}.  (34) 
0 

The cos 2 me term which appears  in the exponent ia l  
part  of (34) can be identified with the size of  the rings 
in the a.c.f, l(p, z) for the helix. Since the radius Am 
is defined by (19), we can write 

COS 2 m e  = 1 -(Am/2ro) 2. (35) 9°7 

Thus,  the cos 2 term is zero when Am = 2ro and uni ty 80~ 
when Am = 0. In general,  the radius Am varies between i 
0 and 2ro and,  therefore,  axial disorder  will modify  7o F- 
the values of  the factors Din(so). 

The effect of  axial disorder  in the thermal  and 50 
paracrystal l ine modes is similar. Differences are -~ 

50 ! expressed by the factors Dm(s r) as defined by (32). 
We choose to examine the paracrystal l ine mode.  The 
averaged intensity Ipd(~,  l) for axial disorder  was ~ 40 
computed  using (32), (33) and (34). The intensities 
for layer lines l = 7 and l = 1 of  the actin helix are 30 
shown in Figs. 4 (a )  and (b) respectively. The model  
parameters  for the actin helix are the same as in Figs. z0 / 
2 and 3. The axial disorder  (a, 0, 0) profiles have 10t- 
g = 0.04. In Fig. 4(a)  the l = 7 profile with axial disor- I 
der (a, 0, 0) is only marginal ly reduced in intensity I 

0 
whereas in (b) the l - -1  profile with axial disorder  
(a, 0, 0) is not iceably reduced in intensity compared  
with the profile without  disorder  (0, 0, 0). 

(B) Radial disorder. Radial  disorder refers to the 
ro variat ion when the lattice point  of the helix has 
variat ion along the radius directed towards to. The 
one-dimensional  Gauss ian  function b(p) describes 
the variat ion about  ro. The Gaussian function b(p) 

has the same form as (8) but  with integral width 
u = ( 2 " t r ) l / 2 8 r .  The orientat ion of  b(p) relative to a (p )  
is fixed at right angles. The Fourier  t ransform of  b(p)  
is B(~); B(~) is also one-dimensional  and it has the 
same form as (9). Since b(p) and B(~) have orienta- 
t ion Om = 2me, the difference em =Om -- ~Om is given by 
em = m e - ~ / 2 .  Thus,  the cos ( ~ + e m )  term in (31) 

Axial disorder for 1= 7 & g=0.04 
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Fig. 4. Diffracted intensity profiles Ipd(S r, l) for the actin helix with 
the same model parameters as in Figs. 2 and 3. The intensities 
for layer lines l = 7 and 1 = 1 are shown in (a) and (b) respec- 
tively. The axial-disorder (a, 0, 0) profiles (dotted lines) have 
g = 0-04. The (0, 0, 0) profiles (continuous lines) have no dis- 
order. 
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becomes sin (4) + me). The appropriate Fourier trans- 
form C'(~:, ~ )  in (32) then becomes 

Ct(~ :, qb)=exp{-tcr[u~sin(%+me)]2}. (36) 

We choose to examine the effect of radial disorder 
in the paracrystalline mode. The averaged intensity 
lpd(~:, l) for radial disorder was computed using (32), 
(33) and (36). The intensities for layer lines I -- 7 and 
l = 1 of the actin helix with the same model parameters 
as before are shown in Figs. 5(a) and (b) respectively. 
The two radial disorder (0, b, 0) profiles have g = 0.04 
and are both noticeably reduced in intensity com- 
pared with the (0, 0, 0) profiles without disorder. 

( C) Axial and radial disorder. When axial and 
radial disorder occur together the appropriate Fourier 
transform C2(~ :, ~ )  is given by the product of the two 
transforms in (34) and (36). By writing A -- (7rrog~) 2, 
where g~ = &p, and R = (Trrogr~) 2, where gr = 8r, the 
combined Fourier transform C'(~, (/)) becomes 

C'(~, ~ ) = e x p [ - t ( A +  g)] 

x e x p [ - t ( A - R )  cos2(%+me)]. (37) 

In the special case when the axial and radial disorders 
are equal, that is, when A -- R, the Fourier transform 
C ' ( s  c, ~ )  is cylindrically symmetric and is given by 
exp ( -2 tA) .  In the thermal mode, the Gaussian trans- 
form exp (-20//) from (30) is equal to e -4A while, in 
the paracrystalline mode, the Gaussian transform 
exp ( -  m°//) is equal to e-2,.3. 

As previously, we choose to examine the paracrys- 
talline mode. The averaged intensity/pd(~, l) for axial 
and radial disorder was computed using (32), (33) 
and (37). The layer-line intensities l = 7 and l = 1 for 
the actin helix with the same parameters as before 
are shown in Figs. 6(a)  and (b) respectively. Both 
(a, b, 0) profiles have equal axial and radial disorder: 
g~ ~ 0-04 and g, = 0.04. The (a, b, 0) profile for l = 7 
in Fig. 6(a)  is the same as the l = 7  profile with 
paracrystalline disorder g--0 .057 in Fig. 3. 

(D) Translational disorder. The inclusion of trans- 
lational disorder is straightforward: it follows directly 
from the one-dimensional case. The Gaussian proba- 
bility expressing the z variation is s(z) with integral 
width w. The Fourier transform of s(z) is S(Z)= 
exp ( -  ~J/'), where W'= 7r(wZ) 2. We treat the case of 
translational disorder only, that is, s(z) is finite but 
with c(p, (p) = 0. The diffracted intensity for a simple 
helix with translational disorder is denoted lz(~, l) 
and, from (28), is given by 

, .  = S - 1  

lz(~, l)=S+2 Y. exp(-t?4r)(S-m)Jo(27r~A,.) 
, . = l  

x cos 27rml/M, (38) 

where t = 2 for thermal disorder and t = m for para- 
crystalline disorder. 

As previously, we choose to examine translational 
disorder in the paracrystalline mode. The integral 
width w is chosen to have the same amount of disorder 
as in Fig. 3, so that the corresponding g value is 
0-0585. Computer  simulation of lpd(0, I) for the actin 
helix with the same model parameters as before shows 
a series of delta-function-like peaks at 1 -- 0, ± 15, +30, 
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Fig. 5. Diffracted intensity profiles lpd(~, !) for the actin helix with 
the same model parameters as in Figs. 2 and 3. The intensities 
for layer lines I= 7 and 1 = 1 are shown in (a) and (b) respec- 
tively. The radial-disorder (0, b, 0) profiles (dotted lines) have 
g = 0.04. The (0, 0, 0) profiles (continuous lines) have no dis- 
order. 
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±45 etc. It is not worthwhile to show the resulting 
intensity plots since they are not informative. The 
integral widths of the peaks are very small; only the 
heights of the peaks are different. The first three 
meridional reflections from the actin helix with g = 
0.0585 when compared with the zero-order height of 
1.0 have heights 0.94, 0.77 and 0.55 respectively. 

Axial & radial disorder for 1 = 7 & g = 0.04 
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~ 40 
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Reciprocal spacing x 0.00075 (A l) 

(a) 

Axial & radial dmorder for 1 = 1 & g =0.04 
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Fig. 6. Diffracted intensity profiles Ipd(¢, 1) for the actin helix with 
same model  parameters as in Figs. 2 and 3. The intensities for 
layer lines l = 7 and l = 1 are shown in (a) and (b) respectively. 
The two (a, b, 0) profiles (dotted lines) with axial and radial 
disorder have the same g value of 0.04. The (0, 0, 0) profiles 
(continuous lines) have no disorder. 

Comparisons with previous work . 

The disorder due to axial, translational and screw 
displacements along the helical axis of chain 
molecules in a crystalline array has been previously 
studied and equations have been derived for these 
effects (Clark & Muus, 1962). Our treatment refers 
to disorder within the heli~ itself and is, therefore, 
not directly comparable. The formulas for axial and 
for translational disorder in the thermal mode are of 
interest, however. The formula for thermal transla- 
tional disorder (Clark & Muus, 1962) is similar: it 
has the same Gaussian transform as we have obtained, 
that is, exp (-2~V). 

The study of thermal axial disorder (Clark & Muus, 
1962) led to the often-quoted formula which, in our 
notation, is 

Ita(~:, l )= I(¢, l) exp [(nS¢)z], (39) 

where n is the order of the Bessel function and where 
the value of n is given by the selection rule (25). Our 
formulas (33) and (34) for axial disorder within the 
helix do not directly involve n, the order of the Bessel 
function. However, we can write for the maxima of 
each Bessel function n--k¢, where k is a constant. 
Thus, (39) becomes 

Itd(~:, 1)~-- I(¢, I) e x p  [ - ( k S q ~ : ) z ] ,  (40) 

and the exponential factor in (40) is now similar to 
our Gaussian transform exp(-2°//) ,  where a//= 
~(u¢) 2. 

The angular motion of subunits in the actin helix 
has recently been studied by Egelman & DeRosier 
(1982). These authors derive an expression for the 
expectation value of the intensity (I) for the case of 
cumulative random angular motions of the subunits. 
In later work, this expression has been reformulated 
(Barakat, 1987) and, in our notation, is 

( I p d ( m ,  I))= S coth ( n t i s / 2 )  2. (41) 

Egelman & DeRosier (1982) treat the case when 
(n&p)z< 1 so that (Ipd(n, l ) )=4S/(n&P) 2. Thus, the 
layer-line intensities are proportional t o  l / r / z  , where 
r/ is the order of the Bessel function. Equation (41) 
should, in principle, be comparable to our equations 
(33) and (34) for axial disorder in the paracrystalline 
mode. These analyses (Engelman & DeRosier, 1982; 
Barakat, 1987) are based upon statistical theory and 
the method is quite different from our analysis, so 
that the two analyses are not readily comparable. 

Our equations (33) and (34) for axial disorder 
involve the Gaussian transform C' (~, l) = 
exp [-a(~&p)Z], where t~ includes the missing factors 
from (34). The individual Din(e) factors of (31) will 
show a fall-off in values as ¢ increases. The diffracted 
intensity Ipa(¢, l) is obtained by summing over m 
values of Dm(¢) according to (33). The question of 
whether lpd(¢, l) for axial disorder is directly related 
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to the order  (n)  of  the characterist ic Bessel functions 
is not readily answered from a study of  (33) and (34). 
We consider  that  (33) and  (34) are correct: the order  
number  n does not appea r  explicitly in these 
equations,  however.  

Compute r  simulation of  lpd(~:, l) in Figs. 4 (a )  and 
(b) show that  axial disorder  has little influence on 
layer line / = 7 ,  n = 1, whereas it has a noticeable 
effect on layer line l = 1, n = 2. The case of  I = 0, n = 0 
(which is not shown) resembles the case of  I = 7, n = 1 
in that the l = 0  profile is little changed by axial 
disorder. Thus,  the diffracted intensity Ipd(~:, l) as 
defined by (33) and (34) tends to show that axial 
disorder  is directly related to the order  (n) of  the 
characterist ic Bessel functions. It might be thought  
that the M and N values play an important  role as 
they define the value of  the radius Am. Recall that 
D, , (~)  values are insensitive to axial d isorder  when 
Am approaches  2ro. However ,  the calculated Ipd(~: , 3) 
and Ipd(~:, 6) profiles for the collagen helix with par- 
ameters of  M = 10, N = 3 and with the same amount  
of  axial d isorder  are identical to those in Figs. 4 (a )  
and (b) respectively, after  allowing for the different 
ro parameters .  Thus, the n dependence  of  axial disor- 
der is inherent  in the f ramework  of  (33) and (34). 
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sabbatical  leave at the Open University Oxford  

Research Unit,  part ial ly funded by Nat ional  Eye 
Institute grant  number  EY05405. We are grateful to 
the Director,  Dr D. A. Blackburn,  and other  members  
of  the staff of  the Oxford  Research Unit  for their 
interest and for helping us with access to the Open  
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Abstract 
It is shown that Shen & Colella [Acta Cryst. (1986). A42, 
533-538; Nature (London). (1987). 329, 232-233; Acta 
Cryst. (1988). A44, 17-21] are in error in asserting that 
'irrespective of instrumental resolution' asymmetric n-beam 
benzil interactions can be recorded only if incident-beam 
wavelengths equal to, or greater than, 3.5 A are used. Such 
interactions are clearly displayed in our Cu Kat and Cr Ko~ 
n-beam patterns of organic crystals, such as benzil, and 
that useful phase information can be readily extracted from 
such data. 

In recent publications, Shen & Colella (1986, 1987, 1988), 
referred to below as 'S&C', described difficulties they 

encountered in their efforts to record asymmetric interaction 
maxima in n-beam patterns of organic acentric benzil crys- 
tals. In discussing results obtained with Cu Kal and Cr Ka~ 
they state that 'so far we have not been able to see the 
asymmetric effects in the wings of the Renninger peaks.' 
Their negative results were attributed to the very small 
half-widths and asymmetries of the benzil maxima, and to 
inadequacies of the instrumentation then available to them, 
i.e. 'the resolution needed on the ~ scale (-~ 1') is not 
normally available in standard laboratory experiments. The 
only way to achieve this kind of resolution is to use a beam 
from a synchrotron light source' (Shen & Colella, 1986, 
p. 537). 

We are aware of the many advantages of synchrotron 
X-ray sources over conventional ones. Clearly, they can 
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